Universal 4-wire Transmitters and Trips SC-7400

- Universal input
- 0.1\% Accuracy
- Optional built-in intrinsic safety barriers.
- Quick and simple - No pots or switches to set.
- Continuous Self-calibration
- High density - DIN mount
- Modular design
- Password Protection

The SC-7400 is an intelligent, universal input signal conditioner/alarm trip that isolates and transmits the status of process signals on a single control loop basis. It handles a variety of temperature and process inputs and offers combinations of analog and relay contact outputs.
All parameters - such as input and output range, setpoints, deadband and burnout - are customer-selectable via software.
Operate it on a PC with easy-to-use Windows based software or with an optional hand-held configurator for easy, on-site configuring and reconfiguring of modules. Alternatively, opt for the factory to perform a custom configuration to meet your needs.
The SC-7400 series incorporates state-of-the-art technology to provide:

- safe, reliable monitoring of plant and machinery
- peak operation for your equipment
- reduced overall system cost and calibration efforts
- the highest density available in smart technology
- the highest level of operational diagnostics and accuracy

With the SC-7400, one unit can be programmed to meet numerous applications ... and you may purchase it with optional intrinsic safety barriers that meet CSA and FM agency requirements. Functional benefits include detachable field wiring, password protection, integrity diagnostics, full software programmability, high packing density, low spare inventory, and EMC immunity.
Fully trained Rochester representatives are equipped with demonstration units for customer selection assistance.

SC-7401 Single analog output

SC-7402 Dual analog output
SC-7403 Single alarm output

SC-7404 Dual alarm output

SC-7405 Single analog and alarm output

ROCHESTER Signal Conditioning

Specifications

Indicators

Power Green LED
Input sensor Green LED (on = OK)
Module Operation Green LED (on = OK)
Alarm 1 Red LED (on = alarm)
Alarm 2 Red LED (on = alarm)

Power Supply

Jumper selectable for 24V DC, 48V
DC, 110V DC, 120V AC 50/60 Hz nominal.
Input Signals
DC Volt (Non IS Models only): 0 to $1 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to
XV (special factory configuration $\mathrm{X}=20$
to 200 V (30 V maximum for CSA))
DC Current (Non IS Models only):
0 to $1 \mathrm{~mA}, 0$ to $5 \mathrm{~mA}, 1$ to $5 \mathrm{~mA}, 0$ to
$10 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 4$ to $20 \mathrm{~mA}, 10$ to
$50 \mathrm{~mA}, 0$ to 5 mA Bipolar, 0 to 10 mA Bipolar
DC mV (All models):
-15 to +85 mV absolute operating range. Zero and span may be set anywhere within range. 4 mV minimum span

T/C (All models):

Software configurable for linearized or non-linearized output
Ohms - 3 or 4 wires (All models): 0 to 500Ω absolute operating range. Zero and span may be set anywhere within range. 50Ω minimum span
RTD (All models) - 2, 3 or 4 wire, 3 wire differential for Pt and Ni RTD, 2 wire only for Cu RTD:
100Ω Pt $\alpha=0.003850,-200$ to
$+850^{\circ} \mathrm{C}$, Min span $50^{\circ} \mathrm{C}$
100Ω Pt $\alpha=0.003916,-200$ to $+850^{\circ} \mathrm{C}$, Min span $50^{\circ} \mathrm{C}$
100Ω Pt $\alpha=0.003923,-200$ to $+650^{\circ} \mathrm{C}$, Min span $50^{\circ} \mathrm{C}$
$120 \Omega \mathrm{Ni},-80$ to $+320^{\circ} \mathrm{C}$, Min span $50^{\circ} \mathrm{C}$
$10 \Omega \mathrm{Cu},-200$ to $+260^{\circ} \mathrm{C}$, Min span $460^{\circ} \mathrm{C}$
Slidewire (Non IS Models only):
May be configured for 500 to 5000Ω span based at zero ohms

Input Accuracy:

$\mathrm{mV}:$	$\pm 0.02 \%$ of reading $\pm 0.005 \mathrm{mV}$, Linear with input
$\mathrm{V}:$	$\pm 0.05 \%$ of reading $\pm 0.6 \mathrm{mV}$, Linear with input
$\mathrm{mA}:$	$\pm 0.05 \%$ of reading $\pm 3.0 \mu \mathrm{~A}$, Linear with input
$\mathrm{T} / \mathrm{C}:$	Accuracy listed in table plus cold junction error

T/C Type	Range ${ }^{\circ} \mathrm{C}$	Accuracy	Min/Max Span $\pm{ }^{\circ} \mathrm{C}$
NIST - J	-180 to 760	$\pm 0.3^{\circ} \mathrm{C}$	110 to 940
NIST -K	-180 to 1300	$\pm 0.5^{\circ} \mathrm{C}$	140 to 1480
NIST -	-150 to 1000	$\pm 0.3^{\circ} \mathrm{C}$	90 to 1150
NIST - R	0 to 500	$\pm 1.0^{\circ} \mathrm{C}$	450 to 1600
	500 to 1600	$\pm 0.7^{\circ} \mathrm{C}$	
NIST - S	0 to 500	$\pm 1.0^{\circ} \mathrm{C}$	480 to 1600
	500 to 1600	$\pm 0.7 \mathrm{C}$	
NIST - T	-200 to 0	$\pm 0.4^{\circ} \mathrm{C}$	160 to 600
	0 to 400	$\pm 0.3^{\circ} \mathrm{C}$	
NIST - B	300 to 500	$\pm 2.0^{\circ} \mathrm{C}$	650 to 1500
	500 to 1800	$\pm 1.0^{\circ} \mathrm{C}$	
BS $^{*}-\mathrm{N}$	0 to 800	$\pm 0.3^{\circ} \mathrm{C}$	140 to 1300
	800 to 1300	$\pm 0.5^{\circ} \mathrm{C}$	
DIN - J	-200 to 900	$\pm 0.3^{\circ} \mathrm{C}$	110 to 1100
	-200 to -100	$\pm 0.4^{\circ} \mathrm{C}$	160 to 800
	-100 to 600	$\pm 0.3^{\circ} \mathrm{C}$	

* British Standard

Cold Junction Error: $\pm 0.5^{\circ} \mathrm{C}$
Non-Linearized T/C:
$\pm 0.02 \%$ of reading $\pm 0.005 \mathrm{mV}$ plus
cold junction accuracy

Analog output signals

Software configurable current outputs:

Range	Max load	Range	Impedance
$0-1 \mathrm{~mA}$	$1600 \mathrm{k} \Omega$	$0-1 \mathrm{~V}$	$1 \mathrm{k} \Omega$
$0-5 \mathrm{~mA}$	$3200 \mathrm{k} \Omega$	$0-5 \mathrm{~V}$	$1 \mathrm{k} \Omega$
$0-10 \mathrm{~mA}$	$1600 \mathrm{k} \Omega$	$1-5 \mathrm{~V}$	$1 \mathrm{k} \Omega$
$0-20 \mathrm{~mA}$	800Ω	$0-10 \mathrm{~V}$	$1 \mathrm{k} \Omega$
$4-20 \mathrm{~mA}$	800Ω		

Relay output

Contact Rating (trip outputs):
3A, 250V AC resistive or 3A, 30V DC, 30W max., SPDT
Trip Range: 0.5 to 100% of span in 0.15\% increments

Deadband: 0 to 20\% of span in 1\%

increments

Analog Output Accuracy:

0 to $5 \mathrm{~mA}, 0$ to $5 \mathrm{~V}, 1$ to 5 V output ranges: $\pm 0.1 \%$ of span, all other analog output ranges: $\pm 0.05 \%$ of span
Tracking Accuracy (SC-7402 only):
4 to $20 \mathrm{~mA} \pm 0.5 \%$ max - others $\pm 1 \%$ typical
Trip Output Accuracy:
$\pm 0.01 \%$ of span

Functional Characteristics

Analog Output Step Response:
For a step of 0 to 100% of span the 10 to 90% response time is less than 0.5 second. The response time from input change to 90% output change is less than 1 second.
Trip Output Step Response:
For a step of 0 to 100\% and the delay
set to zero the trip will occur within 0.5 second.
Input Impedance:
T/C, mV: Greater than $2 \mathrm{M} \Omega$
$\mathrm{mA}: \quad 50 \Omega \pm 5 \%$
V: $\quad 500 \mathrm{~K} \Omega \pm 5 \%$

RTD Excitation:

$165 \mu \mathrm{~A} \pm 10 \%$

RTD Failure:
Open Lead: Upscale
Shorted RTD: Downscale
Sensor OK LED turned off with sensor failure. Failure defined as 5% over or under the selected input range or input channel out of range. Analog output configurable for either upscale or downscale burnout. Trip output configurable for alarm if sensor fails.
T/C Burnout Current:
Less than $0.1 \mu \mathrm{~A}$
T/C, mV, mA, V Failure:
Sensor OK LED turned off with sensor failure. Failure defined as $\pm 5 \%$ over or under the selected input range or input channel out of range. Analog output configurable for either upscale or
downscale burnout. Trip output configurable for alarm if sensor fails.

Dielectric Strength:

2.5 kV AC $50 / 60 \mathrm{~Hz}$ from input to output/power/ground
1 KV AC from power to output/ground 1 kV AC between output and ground 1 KV AC between analog and relay outputs if applicable

Insulation Resistance:

Less than $5 \mathrm{M} \Omega$ at 500 V DC after 1 minute

Leakage Current:

Less than 1 mA at 2500 VAC after 1 minute

Long Term Stability:

Less than 0.1% of span over 6 months
Warm Up:
Full accuracy within 5 minutes of power applied

Power Consumption:

DC: Nominal 2.5 W with one transmitter or trip output (transmitter output at 20 mA or relay on). Nominal 3.0 W with two outputs (same conditions)
120 V AC, $50 / 60 \mathrm{~Hz}$: Nominal 4 VA at a leading power factor
Weight: $0.18 \mathrm{lbs}(0.4 \mathrm{Kg})$
Specifications subject to change without notice.

Operating Influences Input Reference Conditions:
mV : $\quad 0$ to 10 mV
T/C: $\quad 0$ to $200^{\circ} \mathrm{C}$ "J" T/C
RTD: $\quad 0$ to $200^{\circ} \mathrm{C} 100 \Omega$ Platinum
Ohm: 0 to 100Ω

Analog Output Reference Condition:

4 to $20 \mathrm{~mA}, 250 \Omega$ load
Ambient Temperature:
Nominal: $\quad 23 \pm 1^{\circ} \mathrm{C}$
Operating Range: -20 to $+70^{\circ} \mathrm{C}$
Storage Range: $\quad-40$ to $+85^{\circ} \mathrm{C}$
Effect on Accuracy: $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$ max.
For Current Input $\pm 0.0075 \% /{ }^{\circ} \mathrm{C}$ max.
For Copper RTD Input $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$ max
Effect on Cold Jct: $\pm 0.015^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ max.

Relative Humidity:

Range: 25 to 95% non-condensing
Effect on Accuracy: $< \pm 0.075 \%$ of span for a change in RH of 25 to 95% at $23^{\circ} \mathrm{C}$
Vibration Effect:
Range: A constant displacement of 1 mm over the range of 5 to 15 Hz , and an acceleration of $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ over the range of 15 to 150 Hz

Effect on Accuracy: < $\pm 0.05 \%$ of span Drop and Topple: $< \pm 0.05 \%$ of span Common Mode Effect:
$<120 \mathrm{~dB}$ at 120 V AC $50 / 60 \mathrm{~Hz}$

Normal Mode Effect:

$<40 \mathrm{~dB}$ with peak to peak signal within maximum input range

Supply Voltage:

Nominal: 24V DC, 48 VDC, 110 VDC,
120 VAC $50 / 60 \mathrm{~Hz}$
Range: < $\pm 15 \%$
Effect on Accuracy: < $\pm 0.05 \%$ of span over the range
Magnetic Field Effect:
$< \pm 0.05 \%$ of span at $0.5 \mathrm{mT}, 50 / 60 \mathrm{~Hz}$
Electromagnetic Susceptibility:
$< \pm 1 \%$ of span over the frequency range of 20 to 1000 MHz at a field strength of $10 \mathrm{~V} / \mathrm{M}$
$< \pm 2 \%$ of span over the frequency ranges of $50-55 \mathrm{MHz}$ and $95-115 \mathrm{MHz}$ at a field strength of $1 \mathrm{~V} / \mathrm{M}$
Tested to: IEC 801.3 Level 2
SWC Protection:
Conforms to IEC 801-4 level 2
ESD (electric discharge):
IEC801-2 level 3 (8kV), No permanent damage
Agency Approvals
Ordinary location:
FM: FM3810 ANSI/ISA S82.01, S82.02, S82.03
CSA: C22.2 NO. 142
Surge withstand capability: per CEI/IEC 801-4 level 2
Intrinsic safety
Hazardous location:
FM: FM-3610
Class 1, Div. 1, Groups A, B, C \& D
CSA: C22.2 NO. 157
Class 1, Div. 1, Groups A, B, C \& D
Division 2:
FM: FM-3611
Class 1, Div. 2, Groups A, B, C \& D
CSA: C22.2 No. 213

Inputs
2-Wire Ohm, RTD

3-Wire Ohm, RTD

4-Wire Ohm, RTD

3-Wire Differential, RTD

Slidewire

mV, T / C

Volts

NOT AVAILABLE

SC-7400-

NOT AVAILABLE

SC-7401-N, SC-7402-N, SC-7401-I and SC-7402-I

SC-7403-N, SC-7404-N, SC-7403-I and SC-7404-I

SC-7405-N, SC-7405-I

Ordering Information

Model	Description		
SC-7401	Single Analog Output		
SC-7402	Dual Analog Output		
SC-7403	Single Alarm Output		
SC-7404	Dual Alarm Output		
SC-7405	Single Analog and Single Alarm Output		
	Code	Intrinsic Safety Option	
	N	Non-intrinsically safe unit and base plate	
	I	Intrinsically-safe unit and base plate	
		Code ${ }^{\text {Base }}$	ate mounting
		S Surface	mount
		R DIN ral	mount base plate
		Code	Configuration
		NC	Not configured
		FC	Factory configured
SC-7401	1	S NC	Ordering Example

